This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title \sim content=t713926090

Synthesis and mesomorphic properties of some new chiral thiobenzoates containing three rings

M. D. Ossowska-Chruściel ${ }^{\text {a }}$
${ }^{\text {a }}$ Institute of Chemistry, University of Podlasie, 08-110 Siedlce, Poland

To cite this Article Ossowska-Chruściel, M. D.(2007) 'Synthesis and mesomorphic properties of some new chiral thiobenzoates containing three rings', Liquid Crystals, 34: 2, 195-211
To link to this Article: DOI: 10.1080/02678290601116217
URL: http://dx.doi.org/10.1080/02678290601116217

PLEASE SCROLL DOWN FOR ARTICLE

> Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
> This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
> The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis and mesomorphic properties of some new chiral thiobenzoates containing three rings

M. D. OSSOWSKA-CHRUŚCIEL
Institute of Chemistry, University of Podlasie, 3-go Maja 54, 08-110 Siedlce, Poland; e-mail: dch@ap.siedlce.pl

(Received 1 March 2006; in final form 28 August 2006; accepted 18 September 2006)

Abstract

Six new compounds with chiral terminal chains and three rings bridged via the -COS- and -COO- groups have been synthesized. Three of them belong to series A and have two benzene rings and one bicyclo[2,2,2]octane, while the remaining three come from series \mathbf{B}, where all three are benzene rings. Series A compounds share a characteristic feature of two smectic phases: SmA^{*} and SmB^{*}, whereas mesogens from the \mathbf{B} series exhibit only the one SmA^{*} phase.

1. Introduction

In a conventional molecule of a thermotropic liquid crystal, replacement of one phenyl ring by the bicyclo[2,2,2]octane group almost always extends the temperature range of the mesophase. In some cases it induces a new phase similar to the one presented in this work. Gray and Kelly [1, 2] and Carr and Gray [3, 4] reported different types of mesogens with bicyclo[2,2,2]octane and cyanophenyl groups. These homologues have higher clearing temperatures than their benzene analogues. Similar results were presented for derivatives of compounds with bicyclo[2,2,2]octane with a cyano terminal group [5]. The change of polymorphism in bi-, tri- and tetra-substituted liquid crystals with an ethyl central group has been shown previously [6, 7]. The increase in mesophase temperature range was also observed in these cases. Melting temperature was found to decrease by as much as $86^{\circ} \mathrm{C}$, with only a slight lowering of clearing temperature (by $5^{\circ} \mathrm{C}$) [8]. The introduction of thioester into an ester group leads to an increase in both melting and clearing temperatures.

Achiral liquid crystal compounds with a bicyclo[2,2,2]octane ring and the central bridge have also been previously described [1-8]. Mesogens with the bicyclo[2,2,2]octane ring, as components of mixtures, cause a decrease in viscosity and lead to the creation of new phases [5, 7]. In the search for new liquid crystalline materials useful as components of mixtures, new threering chiral mesogens from the \mathbf{A} and \mathbf{B} series have been synthesized. The chemical structures of chiral mesogens from these series are presented in figure 1.

Each of these six compounds has a chiral terminal chain but none of their smectic phases shows any electro-optical switching, even at high voltages. Both
the thioester link and its position in the molecule have an important influence on the mesomorphic properties of liquid crystals; the presence of the bicyclo[2,2,2]octane ring also influences the phase transitions. The compounds from series \mathbf{A} with the -COO- central groups have an enantiotropic SmA^{*} and monotropic SmB* phases, while mesogens with the -COS- central group have enantiotropic SmA* and SmB* phases. A characteristic feature of the series B compounds is the occurrence of only one enantiotropic SmA* phase. As will be shown later, this difference in the location of the -COS- and -COO- central groups induces significant changes in the phase behaviour.

2. Characterization

The structures of the final products and of the intermediates were confirmed by IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy and by elemental analysis (EA). The ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Varian Unity Plus spectrometer operating at 200 MHz or 500 MHz $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right.$ as internal standard). IR spectra were recorded on a FTIR Nicolet Magna 760 spectrometer. The chemical purity was checked by thin layer chromatography and further confirmed by elemental analysis using a Perkin-Elmer 2400 spectrometer. The optical purity of compounds was determined by chiral HPLC.

Transition temperatures were determined by means of a polarizing microscope with Linkam programmable heating stage THMSE 600 . Heating and cooling rates were $\pm 2 \mathrm{~K} \mathrm{~min}^{-1}$. DSC measurements were performed using a DSC 822° Mettler Toledo Star System differential scanning calorimeter. The transition temperatures were also examined by polarized optical

and Z and Y are respectively:
-COO- ; - $\mathrm{COO}-$
-COO- ; -COS-
-COS- ; -COO-
Figure 1. The chemical structures of chiral mesogens from the A and B series.
microscopy (POM) and transmitted light intensity (TLI) methods. X-ray measurements were performed on a Philips X'Pert diffractometer as well as a Guinier symmetrical focusing transmission photographic camera. The ordinary and extraordinary refractive indices (n_{o} and n_{e}) of all compounds from the \mathbf{A} and \mathbf{B} series were measured with the Atago-2T refractometer at sodium wavelength $\left(\lambda_{\mathrm{Na}}=5893 \AA\right)$.

3. Synthesis

In the chemical structures of chiral mesogens from the \mathbf{A} and \mathbf{B} series there are certain regular molecular fragments, namely: 4-pentylbicyclo[2,2,2]octyl (series
A, 6, $\mathbf{8}$ and 10) and 4-pentylphenyl (series B, 7, 9 and 11), and a chiral chain (\mathbf{A} and \mathbf{B} series). Compounds from the \mathbf{A} and \mathbf{B} series were prepared according to the procedures presented in detail in Figure 2.

Synthesis of the triesters 6-11 began with the preparation of the hydroxy-diester intermediates 3 and 4 and mercapto-diester 5. (S)-(+)-1-methylheptyl 4-(4hydroxybenzoyloxy)benzoate 3 was obtained according to the general methods shown in figure 3. The (S)-(+)-2octanol was purchased from Fluka Co. Chem., chira select $>99.5 \%$. The intermediates 1-methylheptyl 4hydroxybenzoate $\mathbf{1 7}$ and $\mathbf{3}$ were also obtained with chira select 99.5% (HPLC) (m.p. $45.5^{\circ} \mathrm{C}$). The hydroxydiester 3 was obtained by esterification of compound 17 with compound 14 , and the product 18 was deprotected by hydrogenolysis to the hydroxy-diester $\mathbf{3}$.

Hydroxy-diester 4 was prepared by the procedure presented in figure 4, through a modification of the method already described for other systems [9-12].

4-Mercaptobenzoic acid 19 was a starting substance. Under slow oxidation it was transformed into dithiodibenzoic acid 20. The acid chloride 21 was obtained by the usual method. Compound 21 was isolated from the reaction mixture by extraction with hot hexane and was purified by double recrystallization from hexane. The diester dithiodibenzoic acid 22 was prepared by esterification of $\mathbf{2 1}$ with (S)-(+)-2-octanol in the presence of toluene and pyridine; it was purified by flash chromatography. The dithiol group was then reduced with sodium borohydride in absolute ethanol under nitrogen, and the resulting (S)-(+)-1-methylheptyl 4mercaptobenzoate 23 was purified by flash chromatography under argon. The final product was obtained as a bright oil, purity 99.3% (HPLC). Compound 24 was prepared by reaction of $\mathbf{2 3}$ with 4-methoxycarbonyloxybenzoyl chloride in toluene and pyridine $(1.05 \mathrm{~mol} /$ 1.0 mol chloride) at $35-40^{\circ} \mathrm{C}$, for 4 h . The thioester 24 was isolated and purified. Deprotection of the hydroxy group of $\mathbf{2 4}$ was performed by modified literature methods [3], to give compound 4. Best results were obtained when the reaction was performed at $10^{\circ} \mathrm{C}$, for 1.5 h and using an excess of NH_{3} aq $2.5 \mathrm{~m} / \mathrm{m}$.

The preparation of (S)-(+)-1-methylheptyl 4-(4-mercaptobenzoyloxy) benzoate 5 was carried out as shown in figure 5. Esterification of dithiodibenzoyl chloride 21 with the 1-methylheptyl 4-hydroxybenzoate 17 gave the desired disulphide $\mathbf{2 5}$. Compound $\mathbf{5}$ was obtained by the reduction of $\mathbf{2 5}$ with sodium borohydride in isopropyl alcohol, with purification by column chromatography under dry argon. The final products 6-11 were prepared in the same way (figure 2) with satisfactory yields (68$75 \%$).

1

3

6 5boOOMH

4

$$
(\underline{1}+\underline{4})
$$

10 5boSOMH
or

11 5PhSOMH
9 5PhOSMH

Figure 2. Synthesis route for compounds 6-11(6, 8, $\mathbf{1 0}$ series A, and 7, 9, $\mathbf{1 1}$ series B). $R^{*}:(S)-(+)$ 1-methylheptyl group; a: pyridine, toluene.

All compounds, intermediate and final, were purified by column chromatography and crystallization until their melting point was constant.

4. Results and discussion

Differential scanning calorimetry (DSC), X-ray diffraction (XRD), FTIR spectroscopy, polarizing optical
microscopy (POM), transmitted light intensity (TLI) and measurements of specific conductivity (SC) and the ordinary and extraordinary refractive indices (RI) were used to study the thermal behaviour of all the liquid crystals from the A and \mathbf{B} series. The phase behaviour was examined during heating and cooling at $2 \mathrm{~K} \mathrm{~min}^{-1}$. Transition temperatures and associated enthalpy and entropy changes for compounds 6-11 obtained during

12
13
b

15

14

16

18

3

Figure 3. Synthesis route for compound 3. a: $\mathrm{NaOH}, \mathrm{DMF}_{6} / \mathrm{C}_{6} \mathrm{H}_{6}$; b: $\mathrm{NaOH}(\mathrm{aq}) / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{HCl}(\mathrm{aq})$; c: SOCl_{2}, toluene; d: (S) $(+) \mathrm{HO}-\mathrm{C}^{*} \mathrm{H}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{13}$, toluene, pyridine; e: $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{THF}, 25-30^{\circ} \mathrm{C}$; f: DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{g}: \mathrm{H} 2,10 \%$ Pd-C, THF, $25-35^{\circ} \mathrm{C}$.
heating are presented in table 1 . Our studies showed that the mesophases of compounds from the A and \mathbf{B} series showed no electro-optical switching, even at high voltages. From XRD and miscibility data, these compounds adopted only two phases: SmA* and SmB*, respectively.
Temperature ranges of the above-mentioned SmA^{*} and SmB^{*} phases are presented in figure 6 . We see that: $\Delta T_{\mathrm{SmA}}=T_{\mathrm{Cr}-\mathrm{SmA}}-T_{\mathrm{SmA}-\mathrm{I}}$ for 7, 9, $\mathbf{1 1}$ and $\mathbf{6}$; $\Delta T_{\mathrm{SmA}+\mathrm{SmB}}=T_{\mathrm{Cr}-\mathrm{SmB}}-T_{\mathrm{SmA-I}}$ for $\mathbf{8}$ and $\mathbf{1 0}$ possess different ranges of the SmA^{*} and SmB^{*} phases. The -COS- and -COO- positions between the rings influence the phase behaviour. When the -COS- group appears directly at the phenyl ring, the range of the SmA phase is greater than when it is located at the chiral branched group for the ternary phenyl system ($\Delta T_{\mathrm{SmA}}=19.0,43.8$ and $63.8^{\circ} \mathrm{C}$ for 7,9 and $\mathbf{1 1}$, respectively). The substitution of one bicyclo[2,2,2]octane ring for one of the three phenyl rings, as well as the introduction
of -COS- between rings, considerably extends the mesophase range ($\Delta T_{\mathrm{SmA}+\mathrm{SmB}}=85.8$ and $88.8^{\circ} \mathrm{C}$ for $\mathbf{1 0}$ and 8, compounds from the A series, figure 6 and table 1). During cooling, the SmB^{*} phase in the 5boSOMH compound shows extensive supercooling and forms a glassy SmB state. No such behaviour is observed in 5boOSMH; it is probably caused by structural differences between these two compounds.
Interlayer distances were determined from X-ray measurements for all the studied liquid crystals. Sample results are given in figures 7 and 8 for temperature dependence of the layer spacing d for 5 boSOMH (10) and 5boOSMH (8), respectively. The change of layer spacing d correlates with the temperature and enthalpy changes of the phase transition points SmB*-SmA*. As can be seen from figures 7 and 8 , the interlayer distances for the SmB^{*} and SmA^{*} phases of 10 and $\mathbf{8}$ depend on the position of -COS- and -COOin the molecules. In 10, interlayer spacing d changes

Figure 4. Synthesis route for compound 4. $R^{*}:(S)-(+)-1$-methylheptyl group; a: $\mathrm{NaOH}(\mathrm{aq}), \mathrm{I}_{2}, \mathrm{HCl} ; \mathrm{b}: \mathrm{SOCl}_{2}$; c: $(S)-(+)-2-$ octanol, toluene, pyridine; d: NaBH_{4}, ethanol; e: 4-methoxycarbonoylbenzoyl chloride, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{f}: \mathrm{NH}_{3} 28 \%$, isopropanol.
abruptly at the $\mathrm{SmB}^{*}-\mathrm{SmA}^{*}$ phase transition (from $34.00 \AA$ in SmB^{*} to $c .33 .25 \AA$ in SmA^{*}). In addition, d remains almost constant in the SmB phase until the $\mathrm{T}_{\mathrm{B}-\mathrm{A}}$ temperature is reached and then decreases slowly in the SmA* phase.

In compound 8, the SmB interlayer distance decreases slightly from 34.28 to $33.60 \AA$ around the $T_{\mathrm{B}-\mathrm{A}}$ temperature. In this case the-COS- group is connected to the benzene ring in the vicinity of the chiral branched chain (S)-1-methylheptyloxy. The layer spacing d of the SmA* phase is almost constant for 5boOSMH, in contrast to the behaviour of in 5boSOMH. The nature
of the changes in the layer spacing in the SmA* phase of 5 boSOMH and in the SmB* of 5boOSMH indicates the existence of pretransition effects in these SmA* and SmB* phases. The only difference in chemical structure between $\mathbf{1 0}$ and $\mathbf{8}$ is the position of the -COS- group. Hence this is the factor that influences the smectic layer thickness and the way it changes in the studied SmA^{*} and SmB^{*} phases. The values of the smectic layer spacing d measured for all the studied substances are summarized in figure 9. The largest is in the SmA* phase of the chiral thiobenzoate liquid crystal with three benzene rings, 5 PhSOMH 11, as compared with the

Figure 5. Synthesis of intermediate compound 5. a: toluene, pyridine; b: NaBH_{4}, ethanol, N_{2}.

Table 1. Thermodynamic parameters characterizing phase transitions of compounds of the \mathbf{A} and \mathbf{B} series.

Compound	Parameters	$\mathrm{Cr}-\mathrm{SmB}$	Cr-SmA	SmB-SmA	SmA-I	ΔT
5boOOMH (6)	$\Delta H\left(\mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$	-	8.4	-	1.1	
	$T_{\mathrm{p}}\left({ }^{\circ} \mathrm{C}\right)$	-	90.0	-	139.8	49.8
	$\Delta S\left(\mathrm{cal} \mathrm{mol}{ }^{-1} \mathrm{~K}^{-1}\right)$	-	23.0	-	2.5	
5boOSMH (8)	$\Delta H\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$	6.1	-	0.5	1.1	
	$T_{\mathrm{p}}\left({ }^{\circ} \mathrm{C}\right)$	84.6	-	122.1	173.4	88.8
	$\Delta S\left(\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$	17.0	-	1.2	2.5	
5boSOMH (10)	$\Delta H\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$	5.5	-	0.4	1.0	
	$T_{\mathrm{p}}\left({ }^{\circ} \mathrm{C}\right)$	71.5	-	96.0	157.3	85.8
	$\Delta S\left(\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$	16.0	-	1.0	2.3	
5PhOOMH (7)	$\Delta H\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$	-	7.1	-	1.2	
	$T_{\mathrm{p}}\left({ }^{\circ} \mathrm{C}\right)$	-	94.8	-	113.8	19.0
	$\Delta S\left(\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$	-	19.2	-	3.1	
5PhOSMH (9)	$\Delta H\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$	-	8.4	-	1.3	
	$T_{\mathrm{p}}\left({ }^{\circ} \mathrm{C}\right)$	-	97.0	-	140.8	43.8
	$\Delta S\left(\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$	-	22.7	-	3.2	
5PhSOMH (11)	$\Delta H\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$	-	6.8	-	1.3	
	$T_{\mathrm{p}}\left({ }^{\circ} \mathrm{C}\right)$	-	73.0	-	136.8	63.8
	$\Delta S\left(\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$	-	19.7	-	3.1	

values found for SmA^{*} and SmB^{*} of chiral three-rings thiobenzoates with a bicyclo[2,2,2,]octane ring (5boOSMH 8 and 5boSOMH 10).

For compounds where the -COS- group is close to the terminal chiral branched group ($\mathbf{9}$ and $\mathbf{8}$), the layer spacings d of the SmA* and SmB* are larger than for $\mathbf{1 0}$, where it neighbours the bicyclooctane ring (figure 9). In
the compound with two - $\mathrm{COO}-$ bridges, $\mathbf{6}$, the SmA^{*} layer spacing is the smallest. The determined differences between average interlayer distances ($\Delta d_{\text {avg }}$) of SmB^{*} $\left(d_{\text {avg }} \mathrm{SmB}^{*}\right)$ and $\operatorname{SmA}\left(d_{\mathrm{avg}} \mathrm{SmA}^{*}\right)$ phases are the following: $\Delta d_{\mathrm{avg}}=d_{\mathrm{avg}}\left(\mathrm{SmB}^{*}\right)-d_{\mathrm{avg}}\left(\mathrm{SmA}^{*}\right)=0.66 \AA$ for 5boOSMH 8, and $0.71 \AA$ for 5boSOMH 10. This leads us to the conclusion that this small change (on average c

Figure 6. Phase diagram for compounds of the \mathbf{A} and \mathbf{B} series.

5boSOMH

Figure 7. Temperature dependence of layer spacing d for 5boSOMH (10) obtained during cooling.

Figure 8. Temperature dependence of layer spacing d for 5boOSMH (8) obtained during cooling.

5PhSOMH, 5PhOSMH, 5PhOOMH, 5boOSMH, 5boSOMH and 5boOOMH

Figure 9. A comparison of the layer spacing d between the SmA^{*} and SmB^{*} phases.
2% for 8 and 10) in the phase transition between two orthogonal phases, indicates a 'loose' structure inside a layer of the SmB* phase.

We have recently reported the crystal structure of a thioester from the homologous series of 4-n-pentylphenyl 4-n-alkoxythiobenzoates ($n \mathrm{OS} 5$) [14-16]. It is worth noting, that an all-trans conformation for alkyl and alkoxy chain is characteristic for the molecules of the n OS5 series. Theoretical calculations for the investigated molecule were carried out by the semiempirical MNDO3 method; the results are shown in figure 10, as an example for molecules of $\mathbf{8}$ (with bicyclo[2,2,2,]octane ring) and 9 (with three phenyl rings). The net charge of the 5boOSMH and 5PhOSMH molecules shows two dipole groups, $-\mathrm{COO}-$ and $-\mathrm{COS}-$ in the central part, and one, $-\mathrm{COOC}^{*} \mathrm{H}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{13}$, in the terminal chain. The largest negative charges appear at oxygen atoms $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 4$ and O 5 whereas the sulphur atom S1 has a slight positive charge. The angle between the terminal chiral group and the nearest phenyl plane is at $c .90^{\circ}$ in both compounds.

It follows from crystallographic investigations of other liquid crystals that the chiral branched terminal chain (S)-1-methylheptyloxy and the nearest phenyl plane are tilted with respect to each other by $c .90^{\circ}[17$, 18]. This is also the case for molecular structures of the
other molecules studied. Table 2 presents a comparison of selected bond lengths and angles of 5boOSMH and 5PhOSMH in the central part of the molecules (thioester group with two adjacent benzene rings) and 4OS5 [16], 5OS5 [14] and 6OS5 [15], obtained from crystal structure analysis. It can be seen that the bond lengths and angles are comparable. This would justify the assumption that the calculated distances, and the molecular lengths in particular, should be close to the crystallographic values.

Interlayer distances d derived from X-ray measurements are given in table 3 . In the SmA^{*} phase of $\mathbf{6}, \mathbf{8}$ and 10 (molecules with a bicyclooctane ring), d is comparable to the actual molecular lengths l calculated in their fully extended conformations, including the covalent radii of the H atoms, approximately 1.07 ($d / l=1.07$). For molecules of 7, $\mathbf{9}$ and $\mathbf{1 1}$ (three benzene rings), $d l l=1.15$ and is greater than for $\mathbf{6}, \mathbf{8}$ and $\mathbf{1 0}$. This indicates the presence of a smectic structure of the $\mathrm{SmA}_{1 \mathrm{e}}$ subtype. Such SmA^{*} phases are called enhanced monolayer SmA_{1} phases [19]. Therefore compounds 6-11 will find better conditions for dimerization in the $\mathrm{SmA}_{1 \mathrm{e}}$ phase than in SmA_{1}. It may be expected that in 6-11 this occurs, as shown in figure 10.

TLI and POM measurements were carried out at a rate of $\pm 2 \mathrm{~K} \mathrm{~min}^{-1}$ for all the compounds. As an

Figure 10. Molecular models of 5boOSMH and 5PhOSMH.
example, below are presented all the phase transitions observed by TLI and POM for 5boOSMH in two types of measurement cells: (1) microslide without alignment layers, glued with cover glass with constant thickness c. $10 \mu \mathrm{~m}$ (classical cell) and (2) $5 \mu \mathrm{~m}$ thick measuring cell, coated with aligning polyamide layer, HG, produced by Linkam. The value of our home made TLI set-up for the studies of phase polymorphism has been discussed elsewhere [20]. The TLI curves obtained for 5boOSMH during heating and cooling are shown in figure 11 (Linkam cell). Clear differences are visible upon the transitions from isotropic to SmA^{*}, from SmA^{*} to SmB^{*} and from SmB* to crystal. The $\mathrm{Cr}-\mathrm{SmB}^{*}, \mathrm{SmB}^{*}-$ SmA* and $\mathrm{SmA}^{*}-\mathrm{I}$ transition temperatures are
consistent with results obtained by other methods (DSC and POM). Note that figure 11 shows the same solid phase during heating and cooling as well as the supercooling effect of the SmB* phase. The TLI curves obtained for cell type (2) show that the phase transitions are less clearly visible than in cell type (1). In the two cells the phase transitions temperatures were almost identical.

Figure 12 presents distinctly different textures of the three phases (SmA*, SmB* and Cr), obtained for the two types of measurement cell, as observed by POM during cooling. Analysis of the texture simplifies the identification and assignment of each of these phases to changes observed in TLI. Figures $12(a-e)$ classical and

Table 2. A comparison bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of 5boOSMH and 5PhOSMH (calculated) and 4OS5 [16], 5OS5 [14] and 6OS5 [15] (crystal structure).

	5boOSMH	5PhOSMH	4 OS5	5 OS5	6 OS5
Bond length					
C(16)-S(1)	1.781	1.781	1.768	1.785	1.746
S(1)-C(13)	1.762	1.763	1.769	1.772	1.785
O(3)-C(16)	1.228	1.227	1.198	1.211	1.215
C(16)-C(17)	1.506	1.505	1.476	1.481	1.470
Angles					
C(16)-S(1)-C(13)	109.3	108.9	103.0	102.4	102.6
S(1)-C(16)-O(3)	122.2	122.1	121.7	121.5	121.5
O(3)-C(16)-C(17)	122.2	122.2	124.5	124.2	123.8
S(1)-C(16)-C(17)	115.5	115.7	114.8	114.3	114.7
C(16)-C(17)-C(22)	119.9	120.1	120.0	122.2	122.9
C(16)-C(17)-C(18)	120.9	120.7	123.2	118.6	118.7
C(22)-C(17)-C(18)	119.0	119.0	118.3	119.2	118.4
S(1)-C(13)-C(12)	121.7	120.9	121.5	121.2	121.2
S(1)-C13)-C(14)	119.3	120.0	119.8	118.6	122.2

($a^{\prime}-e^{\prime}$) HG Linkam, demonstrate: (a) SmA*, fan-shaped texture with focal-conics at $161.5^{\circ} \mathrm{C} ;\left(a^{\prime}\right) \mathrm{SmA}^{*}$, ordered fan-shaped texture at $161.5^{\circ} \mathrm{C}$; (b) phase transition SmA*-SmB* with decreasing temperature at $121.7^{\circ} \mathrm{C}$; (b ') beginning of phase transition $\mathrm{SmA}^{*}-\mathrm{SmB}^{*}$ at $121.7^{\circ} \mathrm{C}$; (c) SmB^{*}, from fan-shaped texture with diminished number of discontinuities at $118.7^{\circ} \mathrm{C}$; $\left(c^{\prime}\right)$ SmB^{*}, obtained from SmA^{*} at $118.7^{\circ} \mathrm{C}$; (d) beginning of phase transition $\mathrm{SmB}{ }^{*}-\mathrm{Cr}$ at $39.6^{\circ} \mathrm{C}$; (d^{d}) phase transition $\mathrm{SmB}^{*}-\mathrm{Cr}$ at $39.6^{\circ} \mathrm{C}$; (e) solid state, paramorphosis from SmB* with spherulitic regions at $27.0^{\circ} \mathrm{C}$; (e^{\prime}) solid state, paramorphic texture obtained by cooling SmB^{*} at $27.0^{\circ} \mathrm{C}$.

The use of two types of cell confirms that whether the cell surface is aligned or unaligned does indeed influence the textures obtained. Thus TLI and POM once again proved useful as research methods in the study of polymorphism, and provided complementary information to DSC.

Temperature variations of optical birefringence (Δn) of 5PhOSMH 9 from series B and of two compounds from series A are shown in figures 13-15. The value of Δn decreases quite quickly with temperature from 0.174

Table 3. Interlayer distance d in the SmA* phase and calculated molecular length l as a function of the molecular structure.

Compound	d / \AA	l / \AA	d / l
5boOOMH (6)	32.97	31.02	1.06
5boOSMH (8)	33.60	31.33	1.07
5boSOMH (10)	33.27	31.21	1.07
5PhOOMH (7)	35.29	30.69	1.15
5PhOSMH (9)	35.61	30.90	1.15
5PhSOMH (11)	36.29	31.28	1.16

to 0.162 in the vicinity of the SmA^{*}-I phase transition for 9 (figure 13). Much the same changes of optical birefringence were observed for other chiral thiobenzoates $\mathbf{7}$ and $\mathbf{1 1}$ containing three benzene rings. As is evident from figures 14 and 15 , the optical birefringence Δn of compounds with bicyclooctane rings, 5 boOSMH 8 , and 5 boSOMH 10 , is much smaller than that of 9 (in $\mathbf{8} \Delta n=0.135$ and in $\mathbf{9} \Delta n=0.174-0.162$). For 5boOSMH, Δn is constant in $\operatorname{SmA}^{*}(\Delta n=0.135)$ and changes abruptly at the $\mathrm{SmA}^{*}-\mathrm{SmB}^{*}$ transition; it then increases linearly very slowly in the SmB* phase (figure 14). For 5boSOMH, Δn distinctly increases in SmA* and is almost linear in the SmB* phase. A small pretransitional effect in the optical birefringence of 5boSOMH is also observed in the change of the layer spacing d (figure 7).

The similar behaviour of specific conductivity σ vs. reciprocal temperature for 5 boSOMH and 5boOSMH is shown in figure 16. The only distinct changes to be seen are those corresponding to the $\mathrm{SmA}^{*}-\mathrm{SmB}^{*}$ phase transition in 5boOSMH. The specific conductivity between the SmA* and SmB* phases cannot be clearly separated from that of the SmA^{*} and SmB^{*} phases for 5 boSOMH. In general, specific conductivity within the SmA* phase decreases very slowly, and is almost constant in the SmB* phase.

5. Preparation of materials

5.1. (S)-(+)-1-Methylheptyl 4-benzyloxybenzoate, 16

(S)-(+) 2-Octanol (0.01 mol) was added dropwise at room temperature to a solution of 4-benzyloxybenzoyl chloride $15(0.01 \mathrm{~mol})$ and pyridine (0.02 mol) in dry toluene (50 ml), with vigorous stirring. The reaction mixture was then stirred at $35-40^{\circ} \mathrm{C}$ for 15 h and the

Figure 11. TLI curve for 5boOSMH for heating (thick line) and cooling (thin line).
progress of the reaction was monitored by TLC. The reaction mixture was neutralized with cold 5% aqueous HCl . The organic phase was separated, washed with water, aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, again water, then dried over anhydrous MgSO_{4}. The solvent was removed and the crude material purified by flash chromatography using $60-100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane. At room temperature the product was a pale yellow oil, yield 86.8%, m.p. $24^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \quad$ NMR $\quad\left(500 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta(\mathrm{ppm}) \quad 0.95-$ $0.86\left(\mathrm{~m}, 6 \mathrm{H}, 2-\mathrm{CH}_{3}\right) ; \quad 1.38-1.31\left(\mathrm{~m}, 16 \mathrm{H},-\mathrm{CH}_{2}-\right) ; \quad 1.60-$ $1.65\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{C}^{*}-\mathrm{CH}_{3}\right) ; 3.90\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-\right) ; 4.52(\mathrm{~s}, 1 \mathrm{H}$, $\left.-^{*}-\mathrm{H}\right) ; \quad 7.15-7.27(\mathrm{~m}, 5 \mathrm{H},-\mathrm{ArH}) ; \quad 7.65-8.06(2 \mathrm{~d}, \quad 4 \mathrm{H}$, -ArH). MS: $m / z 340 \lambda_{1}\left(\mathrm{M}^{+}\right) ; 211 \lambda_{2} ; 120 \lambda_{3} ; 91 \lambda_{4} ; 65$ λ_{5}. IR (KBr) $\left(\mathrm{cm}^{-1}\right): 3081 ; 3039 ; 2950 ; 2941 ; 1725 ; 1706 ;$ 1600; 1560; 1490; 1400.

5.2. (S)-(+) 1-Methylheptyl 4-hydroxybenzoate, 17

A solution of the benzyl ether $\mathbf{1 6}(8.35 \mathrm{~g}, 25 \mathrm{mmol})$ in THF (150 ml) containing 10% Pd-C (1.09 g) was hydrogenated at $30^{\circ} \mathrm{C}$ for 16 h . The apparatus was purged with nitrogen and the reaction mixture filtered through silica gel. The crude product was recovered by evaporation of the filtrate (yield 97% as an oil). Recrystallization of this material from hexane gave $5.9 \mathrm{~g}(94 \%)$ of the purified phenol 17 , m.p. $44-45^{\circ} \mathrm{C}$, $[\alpha]_{D=+40.9}^{20}\left(c=1.20 ; \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 0.96\left(\mathrm{~s}, 3 \mathrm{H}-\mathrm{CH}_{3}\right) ; 1.40(\mathrm{~m}, 11 \mathrm{H}$ alkyl); $1.75(\mathrm{~m}$, $2 \mathrm{H}-\mathrm{C}^{*}-\mathrm{CH}_{2}-$); $5.20\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}^{*} \mathrm{H}-\right) ; 6.95$ (d,2H-Ar
ortho to -OH$) ; 8.05(\mathrm{~d}, 2 \mathrm{H}-\mathrm{Ar}$ ortho to -COOR). MS: $\mathrm{m} / \mathrm{z} 250 \lambda_{1}(3.3 \%)\left(\mathrm{M}^{+}\right), 138 \lambda_{2}(89 \%), 121 \lambda_{3}(100 \%), 112$ $\lambda_{4}(38 \%)$. IR $(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right): 3600-3200(-\mathrm{OH}), 1670(-$ $\mathrm{C}=\mathrm{O}$), 1600 (phenyl ring stretching). EA: C 71.88 (72.0), H 8.73 (8.8)\%.

5.3. (S)-(+)-1-Methylheptyl 4-(4-hydroxybenzoyloxy)benzoate, 3

The compound 18 was obtained by esterification of the acid $\mathbf{1 4}$ with the phenol $\mathbf{1 7}$ using the dicyclohexylocarbodiimide procedure, but with a reflux time of 4 h followed by stirring at r.t. for 15 h . The crude product was purified by column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (1/ 2) to give 82.3% yield. The intermediate $\mathbf{3}$ was obtained by hydrogenolysis, the same procedure as used for the benzyl ether 16. The crude product was crystallized from hexane to give the phenol $\mathbf{3}$ in a 73% yield, m.p. $170-171^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad \delta(\mathrm{ppm})$ $0.86\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ; 1.31(\mathrm{~m}, 11 \mathrm{H}$ alkyl); $1.65(\mathrm{~m}, 2 \mathrm{H}$, $-\mathrm{CH}_{2}, \alpha$ to $\left.\mathrm{C}^{*}\right) ; 5.12\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}^{*} \mathrm{H}\right) ; 6.91(\mathrm{~m}, 2 \mathrm{H}$ ar. ortho to -OH$) ; 7.33(\mathrm{~m}, 2 \mathrm{H}$ ar. ortho to -OOC$) ; 8.14(4 \mathrm{H}$ ar. ortho -COO). EA: C 71.20 (71.35), H 7.06 (7.03)\%.

5.4. (S)-(+)-1-Methylheptyl 4-(4-hydroxybenzoylthio)benzoate, 4

Thionyl chloride (40 ml) was added to a suspension of $4,4^{\prime}$-dithiodibenzoic acid $20(4.77 \mathrm{~g}, 15 \mathrm{mmol})$ in

5boOSMH

Figure 12. Texture of $\mathrm{SmA}^{*}, \mathrm{SmB}^{*}$ and Cr phases obtained for compound 5 boOSMH in the two types of measurement cell: classical ($a-e$) and Linkam cell (from $a^{\prime}-e^{\prime}$). For details see text.

5PhOSMH, $\Delta \mathrm{n}$

Figure 13. Optical birefringence of 5PhOSMH as a function of temperature.

Figure 14. Optical birefringence of 5boOSMH vs. reciprocal temperature.

Figure 15. Optical birefringence of 5 boSOMH vs. reciprocal temperature.

Figure 16. Specific conductivity vs. reciprocal temperature for 5boOSMH and 5boSOMH.
anhydrous toluene $(40 \mathrm{ml})$. The mixture was heated under reflux until dissolution was complete. The mixture was then extracted with hot hexane; the extract was concentrated, and the crude product crystallized from hexane. 4,4'-Dithiodibenzoyl chloride 21 (m.p. $80-82^{\circ} \mathrm{C}$) was obtained in 73% yield. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.05(\mathrm{~m}, 4 \mathrm{H}$, ortho to $\mathrm{COCl}) ; 7.59(\mathrm{~m}, 4 \mathrm{H}$, ortho to $-\mathrm{S}-\mathrm{S}-)$.
$(S)-(+)-2-O c t a n o l(1.54 \mathrm{~g}, 5 \mathrm{mmol})$ in toluene $(30 \mathrm{ml})$ was added dropwise to a solution of $21(1.72 \mathrm{~g}, 5 \mathrm{mmol})$ in dry toluene $(30 \mathrm{ml})$ and pyridine $(0.45 \mathrm{~g}, 6 \mathrm{mmol})$. The mixture was stirred at $35-40^{\circ} \mathrm{C}$ for 18 h (TLC control, $R_{f}=0.48$ in CHCl_{3}). The mixture was filtered, and the filtrate washed with cold water, hydrochloric acid, and again cold water. The toluene layer was dried over anhydrous MgSO_{4} and concentrated under vacuum to a yellow oil; this was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluant. The product 22 was obtained as a light yellow oil (72% yield). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 0.86(\mathrm{t}$, $\left.6 \mathrm{H},-\mathrm{CH}_{3}\right) ; 1.29(\mathrm{~m}, 22 \mathrm{H}, \mathrm{al}) ; 1.62\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right) ; 5.13(\mathrm{~s}$, 2 H to $\left.\mathrm{C}^{*}\right) ; 7.50(\mathrm{~m}, 4 \mathrm{H}$, ortho to $-\mathrm{S}-\mathrm{S}-) ; 7.95(\mathrm{~m}, 4 \mathrm{H}$, ortho to - COO).

Sodium borohydride $(0.36 \mathrm{~g}, 10 \mathrm{mmol})$ was added in portions to a solution of compound $22(2.7 \mathrm{~g}, 5 \mathrm{mmol})$ in absolute ethanol $(70 \mathrm{ml})$ which was then stirred under nitrogen at r.t. for 1 h (TLC, R_{f} of product 0.62 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The reaction mixture was added to water with ice and hydrochloric acid and extracted with dichloromethane $(3 \times 50 \mathrm{ml})$. The combined dichloromethane layers ware washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, added dry silica gel $(2 \mathrm{~g})$ and evaporated to dryness. The silica gel plug was placed on top of a chromatography column and eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under dry argon. Product $\mathbf{2 3}$ was obtained as a yellow oil in 93% yield, optical purity 99.5% (HPLC). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 0.98\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ; 1.39(\mathrm{~m}$, 11 H, alkyl $) ; 1.75\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{C}^{*}-\mathrm{CH}_{2}\right) ; 3.72(\mathrm{~s}, 1 \mathrm{H},-\mathrm{SH})$; $5.18\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}^{*} \mathrm{H}-\right) ; 7.10(\mathrm{~d}, 2 \mathrm{H}-\mathrm{Ar}$ ortho to -SH$), 7.95$ (d,2H-Ar ortho to -COOR). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2570 (SH), 1680 (COO), 1600 (phenyl ring stretching). EA (\%) calc. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}, \mathrm{C} 67.67$, H 8.27, S 12.03; found C $67.70, \mathrm{H} 8.23$, S 12.00 .

Compound 23 ($2.7 \mathrm{~g}, 10 \mathrm{mmol}$) in anhydrous methyl chloride (30 ml) was slowly added to a solution of 4methoxycarbonoylbenzoyl chloride $(2.1 \mathrm{~g}, 10 \mathrm{mmol})$ with pyridine $(0.8 \mathrm{~g}, 10.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. The mixture was stirred at r.t. for 12 h under dry argon. The product 24 was isolated and purified by typical methods and was obtained as an oil in 81% yield.

Aqueous Ammonia $(28 \%, 50 \mathrm{ml})$ was added to a solution of compound $24(3.7 \mathrm{~g}, 8.5 \mathrm{mmol})$ in isopropa$\mathrm{nol}(50 \mathrm{ml})$, and the reaction mixture was stirred at $10^{\circ} \mathrm{C}$
for 2.5 h (TLC control). The mixture was added to 150 ml water with ice and 3 ml HCl ; the insoluble solid was removed by filtration, washed with water and dried. The crude product was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was recrystallized from hexane to give 2.5 g of phenol 4 in 78% yield, m.p. $116-117^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 0.87\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$; 1.33 (m,11H,alkyl); *5.06 (s,1H, -C*H-); $6.90(\mathrm{~s}, 1 \mathrm{H},-$ OH) $7.05(\mathrm{~d}, 2 \mathrm{H}$, ortho to -OH$) ; 7.56(\mathrm{~d}, 2 \mathrm{H}$, ortho to -SOC-); 8.00 (d,2H, ortho to -COS-); 8.30 (d, 2 H , ortho to $\left.{ }_{-} \mathrm{COOR}^{*}\right)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3393, 2931, 2857, 1716, 1682, 1600, 1580, 1511, 1284, 1209, 1164, 901, 842, MS $(\mathrm{m} / \mathrm{z}, \%): 387\left(\mathrm{M}^{+}+1,2,50\right), 121\left(\mathrm{M}^{+1}-266,100,00\right), 136$ $\left(\mathrm{M}^{+}-250,89,30\right)$. $\mathrm{EA}(\%)$ calc for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}$ C 68.39 , H 6.74, S 8.29; found C 68.41, H 6.79, S 8.26.

5.5. (S)-(+)-1-Methylheptyl 4-(4-mercaptobenzoyloxy)benzoate, 5

Pyridine (22 mmol) was added to a solution of $4,4^{\prime}$ dithiodibenzoyl chloride 21 ($3.55 \mathrm{~g}, 10 \mathrm{mmol}$) in toluene $(50 \mathrm{ml})$, stirred for 10 min and added slowly to a solution of compound 17 in toluene (40 ml) and stirred at $40-45^{\circ} \mathrm{C}$ for 18 h . The crude product 25 was isolated in the same way as 22 . The white product 25 was recrystallized from methyl chloride/ethyl alcohol (1/2), m.p. $113-115^{\circ} \mathrm{C}$; a yield of 67% was achieved. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 0.87\left(\mathrm{t}, 6 \mathrm{H},-\mathrm{CH}_{3}\right) ; 1.3$ ($\mathrm{m}, 22 \mathrm{H}$, alkyl); $1.63\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right) \alpha$ to $\left.\mathrm{C}^{*}\right) ; 5.15(\mathrm{~s}, 2 \mathrm{H}$ to $\left.\mathrm{C}^{*}\right) ; 7.27(\mathrm{~m}, 4 \mathrm{H}$, ortho to -OOC$) ; 7.65(\mathrm{~m}, 4 \mathrm{H}$, ortho to $-\mathrm{S}-\mathrm{S}-) ; 8.13(8 \mathrm{H}$, ortho to -COO$)$.

Sodium borohydride $(0.189 \mathrm{~g}, 5 \mathrm{mmol})$ was added quickly to a solution of compound $25(3.7 \mathrm{~g}, 5 \mathrm{mmol})$ in absolute ethanol $(70 \mathrm{ml})$ and the mixture stirred under nitrogen at room temperature for 50 min (TLC control, R_{F} of product 0.28 in CHCl_{3}). The reaction mixture was added to water with ice and hydrochloric acid and extracted with dichloromethane $(3 \times 50 \mathrm{ml})$. The combined dichloromethane layers were washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$; the solution was the filtered, dry silica gel $(2 \mathrm{~g})$ added and evaporated to dryness. The silica gel plug was placed on top of a chromatography column and eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The intermediate 5 was obtained in a yield of 71%, m.p. $54.0-54.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 0.9\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ; 1.29(\mathrm{~m}$, 11 H , alkyl.); $3.99(\mathrm{~s}, 1 \mathrm{H},-\mathrm{SH}) ; 5.11\left(\mathrm{~s}, 1 \mathrm{H}\right.$, to $\left.\mathrm{C}^{*}\right)$; $6.91(\mathrm{~d}, 2 \mathrm{H}$, ortho to -SH$) ; 7.73(\mathrm{~d}, 2 \mathrm{H}$, ortho to -OOC$)$; $8.05(\mathrm{~d}, 2 \mathrm{H}$, ortho to -COOR$) ; 8.35(\mathrm{~d}, 2 \mathrm{H}$, ortho to -COO-Ar). MS ($\mathrm{m} / \mathrm{z}, \%$) : $387\left(\mathrm{M}^{+}+1,18.1\right) ; 136\left(\mathrm{M}^{+}-250\right.$, 100.0); $250\left(\mathrm{M}^{+}-136,52.7\right) ; 120\left(\mathrm{M}^{+}-266,61.2\right)$. EA for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}$: calcd C 68.39, H 6.74, S 8.29; found C 68.32, H 6.79, S 8.28\%.

5.6. General procedure for the preparation of compounds 6-11

Dry pyridine (10 mmol) was added to a solution of 10 mmol of compound $\mathbf{1}$ or 2 in 40 ml dry dichloromethane and stirred for 5 min . A solution of 10 mmol of compound $\mathbf{3}, \mathbf{4}$ or $\mathbf{5}$ in 30 ml dry dichloromethane was added to this mixture. The reaction mixture was stirred at room temperature for $10-15 \mathrm{~h}$. As soon as TLC analysis revealed completion of the reaction, the reaction mixture was cooled to $10^{\circ} \mathrm{C}$ and added to water with ice and hydrochloric acid $(15 \mathrm{ml}, 15 \%)$. The dichloromethane layer was washed several times with water and aqueous sodium carbonate. The organic phases were dried over anhydrous MgSO_{4} and then filtered. Solvent was evaporated from the filtrate; the residue was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluant to give a white solid. This was recrystallized from absolute ethanol to give white crystals of compounds: 6 (80.6%), 7 (82.5%), $\mathbf{8}$ (73.4\%), 9 (79.2\%), 10 (65.7%) and 11 (70.1\%).

6: ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.90(\mathrm{~m}, 6 \mathrm{H},-$ $\left.\mathrm{CH}_{3}\right) ; 1.29\left(\mathrm{~m}, 16 \mathrm{H},-\mathrm{CH}_{2}-\right.$, alkyl); $1.34\left(\mathrm{~d},-\mathrm{CH}_{3}\right.$ to $\left.\mathrm{C}^{*}\right)$; $1.42\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\alpha\right.$ to $\left.\mathrm{C}^{*}\right) ; 1.67$ (m, 12 H , bo-ring); 5.17 ($\left.\mathrm{s}, 1 \mathrm{H},-\mathrm{C}^{*} \mathrm{H}-\right) ; 7.45(\mathrm{~m}, 4 \mathrm{H}$, ortho to $-\mathrm{OCO}-) ; 8.14$ (m, 4 H , ortho to -CO). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2927, 2860, 1746, $1738,1711,1600,1505,1263,1193,1161,1063,1063$, 977, 759. MS ($\mathrm{m} / \mathrm{z}, \%$): $576\left(\mathrm{M}^{+}, 1\right), 207(100), 120(89)$. EA (\%) calc. for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{6}$ C 75.00, H 8.33; found C 75.06, H 8.30.

7: ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.98$ (m, $6 \mathrm{H},-$ CH_{3}); 1.57 (m, 19H, alkyl); 2.70 (t, 2H, $-\mathrm{CH}_{2}-\mathrm{Ar}$); 5.24 $\left(\mathrm{s}, 1 \mathrm{H},-\mathrm{C}^{*} \mathrm{H}\right) ; 7,55\left(\mathrm{~d}, 2 \mathrm{H}\right.$, ortho to $\left.-\mathrm{CH}_{2}-\right) ; 7.78$ (m, 4 H , ortho to -OCO); 8.20-8.40 (m, 6 H , ortho to -CO). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2928, 2854, 1738, 1721, 1701, 1602, 1508, 1462, 1414, 1264, 1203, 1162, 1059, 1015, 890, 758. MS ($\mathrm{m} / \mathrm{z}, \%$): $544\left(\mathrm{M}^{+}, 2\right), 121$ (100), 147(79). EA (\%) calc. for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{6}$ C 75.00, H 7.35; found C 74.98, H 7.38 .

8: ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.89(\mathrm{~m}, 6 \mathrm{H},-$ $\left.\mathrm{CH}_{3}\right) ; 1,26\left(\mathrm{~m}, 16 \mathrm{H},-\mathrm{CH}_{2}-\right) ; 1,35\left(\mathrm{~d}, 3 \mathrm{H}-\mathrm{CH}_{3}\right.$ to $\left.\mathrm{C}^{*}\right)$; $1,46\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\alpha\right.$ to $\left.\mathrm{C}^{*}\right) ; 1,70(\mathrm{~m}, 12 \mathrm{H}$, bo-ring); $5.19\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}^{*} \mathrm{H}\right) ; 7.27(\mathrm{~d}, 2 \mathrm{H}$, ortho to -SCO$) ; 7.53(\mathrm{~d}$, 2 H , ortho to -OCO$) ; 8.12(\mathrm{~d}, 2 \mathrm{H}$, ortho to -COOAr$)$; 8,19 (d,2H, ortho to -COOC*). IR (KBr): 2925, 2859, 1741, 1710, 1667, 1598, 1457, 1409, 1269, 1203, 1166, 1112, 902, 762. MS (m/z, \%): $592\left(\mathrm{M}^{+}, 2\right), 207$ (100), 120 (91). EA (\%) calc. for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{~S}$ C 72.97, H 8.11, S 5.41; found C 73.00, H 8.09, S 5.42.

9: ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{~Hz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.90(\mathrm{~m}, 6 \mathrm{H},-$ CH_{3}); 1.62 (m, 19H, alkyl); 2.73 (t, 2H,- $\mathrm{CH}_{2}-\mathrm{Ar}$); 5,20 $\left(\mathrm{s}, 1 \mathrm{H},-\mathrm{C}^{*} \mathrm{H}\right) ; 7.51\left(\mathrm{~d}, 2 \mathrm{H}\right.$ ortho to $\left.-\mathrm{CH}_{2}-\right) ; 7.60(\mathrm{~d}, 2 \mathrm{H}$ ortho to -SCO$) ; 7.70(\mathrm{~d}, 2 \mathrm{H}$ ortho to $-\mathrm{OOC}-\mathrm{Ar}) ; 8,19(\mathrm{~d}$, 2 H ortho to $\left.-\mathrm{COOC}^{*}-\right) ; 8.30(\mathrm{~d}, 2 \mathrm{H}$ ortho to $-\mathrm{COS}-$);
8.39 (d, 2 H ortho to -COOAr$)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2926, 2856, 1743, 1719, 1667, 1596, 1460, 1404, 1274, 1227, 1166, 1113, 1073, 906, 761. MS (m/z, \%): $560\left(\mathrm{M}^{+}, 2\right)$, 147 (91), 121 (100). EA (\%) calc. for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{~S} \mathrm{C}$ 72.89, H 7.14, S 5.74; found C 72.89, H 7.12, S 5.73.

10: ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.93(\mathrm{~m}, 6 \mathrm{H}$, $\left.-\mathrm{CH}_{3}\right) ; 1.29\left(\mathrm{~m}, 16 \mathrm{H},-\mathrm{CH}_{2}-\right) ; 1.40\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ to $\left.\mathrm{C}^{*}\right) ; 1.49\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-, \alpha\right.$ to $\left.\mathrm{C}^{*}\right) ; 1,76(\mathrm{~m}, 12 \mathrm{H}$, boring); $5.21\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}^{*} \mathrm{H}\right) ; 7.20(\mathrm{~d}, 2 \mathrm{H}$, ortho to -SCO$)$; 7.49 (d, 2 H , ortho to -OCO$) ; 8.16(\mathrm{~d}, 2 \mathrm{H}$, ortho to COOAr); 8.23 ($\mathrm{d}, 2 \mathrm{H}$, ortho to $-\mathrm{COOC}^{*}$). IR (KBr , cm^{-1}): 2927, 2858, 1748, 1717, 1667, 1594, 1456, 1410, 1272, 1206, 1165, 1111, 1040, 903, 755. MS ($\mathrm{m} / \mathrm{z}, \%$ \%): 592 $\left(\mathrm{M}^{+}, 2\right), 207$ (100), 121 (93). $\mathrm{EA}(\%)$ calc. for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{~S}$ C 72.97, H 8.11, S 5.41; found C 72.99, H 8.09, S 5.40.

11: ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{~Hz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) ; 0.94(\mathrm{~m}, 6 \mathrm{H},-$ $\left.\mathrm{CH}_{3}\right) ; 1.42\left(\mathrm{~m}, 19 \mathrm{H}\right.$, alkyl); $2.80\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{Ar}\right) ; 5.23$ $(\mathrm{s}, 1 \mathrm{H},-\mathrm{C} * \mathrm{H}) ; 7.40(\mathrm{~d}, 2 \mathrm{H}$, ortho to -SCO$) ; 7.51(\mathrm{~d}, 2 \mathrm{H}$, ortho to $-\mathrm{CH}_{2-}$); $7.64(\mathrm{~d}, 2 \mathrm{H},-\mathrm{OCO}) ; 8.15(\mathrm{~d}, 2 \mathrm{H}$, ortho to $\left.-\mathrm{COOC}^{*}\right) ; 8.24(\mathrm{~d}, 2 \mathrm{H}$, ortho to -COS$), 8.30(\mathrm{~d}, 2 \mathrm{H}$, ortho to -COO). IR (KBr, cm^{-1}): 2926, 2855, 1738, $1718,1675,1605,1460,1411,1264,1210,1162,1114$, 1068, 1015, 905, 758. MS (m/z, \%): $560\left(\mathrm{M}^{+}, 2\right), 147$ (100), 121 (93). EA (\%) calc. for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{~S} \mathrm{C} \mathrm{72.86}$, 7.14, S 5.71; found C 72.83, H 7.15, S 5.70.

6. Conclusion

The synthesis of six new compounds with chiral terminal chains and three-ring molecules has been described in detail. These compounds have either two benzene rings and one bicyclo[2,2,2]octane or three benzene rings with $-\mathrm{COS}-$ and $-\mathrm{COO}-$ bridging. Replacing the $-\mathrm{COO}-$ bridge with $-\mathrm{COS}-$ increases thermal stability of the compounds. In mesogenes of the B series the change of the -COS- bridge does not generate new phases. One can observe the influence of the location of the bridge on the phase transition temperatures. In the \mathbf{A} series the-COS-bridge leads to the formation of an enantiotropic SmB^{*} phase. The location of the-COS- bridge influences the formation of a supercooled glassy state. When comparing the properties of series \mathbf{A} and \mathbf{B} compounds, a distinct influence of the bicyclo[2,2,2]octane ring on phase polymorphism can be seen.

All the six compounds have an enantiotropic SmA* phase. Compound 5boOOMH (6) has enantiotropic SmA* and monotropic SmB* phases. Its analogue 5PhOOMH (7) has only an enantiotropic SmA* phase. Compounds 5PhOSMH (9) and 5PhSOMH (11) also have an enantiotropic SmA^{*} phase. Compounds 5boOSMH (8) and 5boSOMH (10) have enantiotropic SmA* and SmB* phases.

In all the substances studied, the smectic layer spacing d and optical birefringence Δn, as well as their differences between the SmA* and SmB* phases, were shown to be influenced by the position of the $-\mathrm{COO}-$ and -COS- linking groups and by the type of rings present in the molecules (one bicyclo[2,2,2] octane or all phenyl).

Acknowledgements

Prof. Jan Przedmojski, Warsaw University of Technology, Poland is thanked for X-ray measurements. I would like to thank Wojciech Zajac for discussions during preparation of the manuscript. This work was partly supported by the Polish Ministry of Scientific Research and Information Technology, Grant No. 4 T09A 20025.

References

[1] G.W. Gray, S.M. Kelly. Chem. Commun, 465 (1980).
[2] G.W. Gray, S.M. Kelly. J. chem. Soc. Perkin II, 267 (1981).
[3] N. Carr, G.W. Gray, S.M. Kelly. Mol. Cryst. liq. Cryst., 66, 267 (1981).
[4] N. Carr, G.W. Gray, D.G. McDonnell. Mol. Cryst. liq. Cryst., 97, 13 (1983).
[5] R. Dąbrowski, J. Dziaduszek, W. Drzewiński, K. Czupryński, Z. Stolarz. Mol. Cryst. liq. Cryst., 191, 171 (1990).
[6] R. Dąbrowski, J. Dziaduszek, T. Szczuciński, Z. Stolarz, K. Czupryński. Liq. Cryst., 5, 1, 209 (1989).
[7] R. Dąbrowski, J. Dziaduszek, J. Szulc, K. Czupryński, B. Sosnowska. Mol. Cryst. liq. Cryst., 209, 201 (1991).
[8] D. Demus, H. Demus, H. Zaschke. Flüssige Kristalle in Tabellen Vols I, II (1974, 1984).
[9] E. Campaigne, W.W. Meyer. J. org. Chem., 27, 2835 (1962).
[10] Y.H. Kim, Y. Gaumont, R.L. Kisliuk, H.G. Mautner. J. med. Chem., 18, 776 (1975).
[11] J.M. Domagala, J.P. Bader, R.D. Gogliotti, J.P. Sachez, M.A. Stier, Y. Song, J.V.N. Vara Prased, P.J. Tummino, J. Scholten, P. Harvey, T. Holler, S. Gracheck, D. Hupe, W.G. Rice, R. Schultz. Bioorg. med. Chem., 5, 596 (1997).
[12] A. Gangiee, R. Devraj, J.J. McGuire, R.L. Kisliuk. J. med. Chem., 38, 4495 (1995).
[13] S.L. Wu, C.Y. Lin. Liq. Cryst., 30, 471 (2003).
[14] J. Chruściel, B. Pniewska, M.D. Ossowska-Chruściel. Mol. Cryst. liq. Cryst., 258, 325 (1995).
[15] Z. Karczmarzyk, M.D. Ossowska-Chruściel, J. Chruściel. Mol. Cryst. liq. Cryst., 357, 117 (2001).
[16] M.D. Ossowska-Chruściel, Z. Karczmarzyk, J. Chruściel. Mol. Cryst. liq. Cryst., 382, 37 (2002).
[17] K. Hori, S. Kawahara, K. Ito. Ferroelectrics, 147, 91 (1993).
[18] K. Hori, K. Endo. Bull. chem. Soc. Jpn., 66, 46 (1993).
[19] R. Dąbrowski, K. Czupryński, J. Przedmojski, B. Ważyńska. Liq. Cyst., 14, 1359 (1993).
[20] M.D. Ossowska-Chruściel, S. Zalewski, A. Rudzki, A. Feliks, J. Chruściel. Phase Transitions (in press).

